Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 22, 2026
-
We report new rogue wave patterns in the nonlinear Schrödinger equation. These patterns include heart-shaped structures, fan-shaped sectors, and many others, that are formed by individual Peregrine waves. They appear when multiple internal parameters in the rogue wave solutions get large. Analytically, we show that these new patterns are described asymptotically by root structures of Adler–Moser polynomials through a dilation. Since Adler–Moser polynomials are generalizations of the Yablonskii–Vorob’ev polynomial hierarchy and contain free complex parameters, these new rogue patterns associated with Adler–Moser polynomials are much more diverse than previous rogue patterns associated with the Yablonskii–Vorob’ev polynomial hierarchy. We also compare analytical predictions of these patterns to true solutions and demonstrate good agreement between them.more » « less
-
Abstract Disease is a key driver of community and ecosystem structure, especially when it strikes foundation species. In the widespread marine foundation species eelgrass (Zostera marina), outbreaks of wasting disease have caused large‐scale meadow collapse in the past, and the causative pathogen,Labyrinthula zosterae, is commonly found in meadows globally. Research to date has mainly focused on abiotic environmental drivers of seagrass wasting disease, but there is strong evidence from other systems that biotic interactions such as herbivory can facilitate plant diseases. How biotic interactions influence seagrass wasting disease in the field is unknown but is potentially important for understanding dynamics of this globally valuable and declining habitat. Here, we investigated links between epifaunal grazers and seagrass wasting disease using a latitudinal field study across 32 eelgrass meadows distributed from southeastern Alaska to southern California. From 2019 to 2021, we conducted annual surveys to assess eelgrass shoot density, morphology, epifauna community, and the prevalence and lesion area of wasting disease infections. We integrated field data with satellite measurements of sea surface temperature and used structural equation modeling to test the magnitude and direction of possible drivers of wasting disease. Our results show that grazing by small invertebrates was associated with a 29% increase in prevalence of wasting disease infections and that both the prevalence and lesion area of disease increased with total epifauna abundances. Furthermore, these relationships differed among taxa; disease levels increased with snail (Lacunaspp.) and idoteid isopod abundances but were not related to abundance of ampithoid amphipods. This field study across 23° of latitude suggests a prominent role for invertebrate consumers in facilitating disease outbreaks with potentially large impacts on coastal seagrass ecosystems.more » « less
-
ZnO-Au nanocomposite thin films have been previously reported as hybrid metamaterials with unique optical properties such as plasmonic resonance properties and hyperbolic behaviors. In this study, Au composition in the ZnO-Au nanocomposites has been effectively tuned by target composition variation and thus resulted in microstructure and optical property tuning. Specifically, all the ZnO-Au nanocomposite thin films grown through the pulsed laser deposition (PLD) method show obvious vertically aligned nanocomposite (VAN) structure with the Au nanopillars embedded in the ZnO matrix. Moreover, the average diameter of Au nanopillars increases as Au concentration increases, which also leads to the redshifts in the surface plasmon resonance (SPR) wavelength and changes in the hyperbolic behaviors of the films. As a whole, this work discusses how strain-driven tuning of optical properties and microstructure resulted through a novel Au concentration variation approach which has not been previously attempted in the ZnO-Au thin film system. These highly ordered films present great promise in the areas of sensing, waveguides, and nanophotonics to name a few.more » « less
-
For over two centuries, clinicians have hypothesized that cancer developed preferentially at the sites of repeated damage, indicating that cancer is basically “continued healing.” Tumor cells can develop over time into other more malignant types in different environments. Interestingly, indefinite growth correlates with the depletion of a modular, early rigidity sensor, whereas restoring these sensors in tumor cells blocks tumor growth on soft surfaces and metastases. Importantly, normal and tumor cells from many different tissues exhibit transformed growth without the early rigidity sensor. When sensors are restored in tumor cells by replenishing depleted mechanosensory proteins that are often cytoskeletal, cells revert to normal rigidity-dependent growth. Surprisingly, transformed growth cells are sensitive to mechanical stretching or ultrasound which will cause apoptosis of transformed growth cells (Mechanoptosis). Mechanoptosis is driven by calcium entry through mechanosensitive Piezo1 channels that activate a calcium-induced calpain response commonly found in tumor cells. Since tumor cells from many different tissues are in a transformed growth state that is, characterized by increased growth, an altered cytoskeleton and mechanoptosis, it is possible to inhibit growth of many different tumors by mechanical activity and potentially by cytoskeletal inhibitors.more » « less
An official website of the United States government

Full Text Available